Faculty Directory

Ken L. Korth

Ken L. Korth


Dale Bumpers College of Agricultural, Food & Life Sciences

(PLPA)-Plant Pathology

Phone: 479-575-5191

Fax: (479) 575-7601

Download vcard


Visit Website

Plant biotechnology
Expertise and Instrumentation: Molecular plant-insect interactions, pathogen and insect resistance pathways, cellular control of enzymes involved in isoprenoid metabolism 

Research in my lab focuses on interactions of plants and insects. Specifically, we use the tools of molecular biology to examine how plants respond to insect herbivory and to insect-derived factors. These factors can include components of caterpillar saliva or regurgitant. We measure gene transcript levels and the release of volatile compounds in both rice and the model legume Medicago truncatula. We are part of a large scale collaborative project aimed at analysis of the M. truncatula genome. This has resulted in the inclusion of nearly 10,000 expressed sequence tags (ESTs) from insect-damaged leaves into an M. truncatula EST database. A related project in the lab deals with regulation of an enzyme important for the biosynthesis of secondary metabolites known as terpenoids. This class of compounds can contribute as antimicrobial factors in plant species such as rice, potato, and pepper. In addition, many of the induced volatile compounds released from leaves following herbivory are terpenoids. Plant sterols that are beneficial in human diets are also produced through this pathway, and we study ways that plants regulate sterol biosynthesis using rice and Arabidopsis.. 

  • Biotechnology in Agriculture (PLPA 4333) each fall for graduate and upper-level undergraduate students

  • Advanced Plant Pathology (PLPA 5303) Team-Taught - Host-Pathogen Interactions

  • B.S.- University of Nebraska-Lincoln (Biological Science) 1987

  • Ph.D.- North Carolina State University (Genetics) 1992 

  • Korth, K.L. (2008) Genes and traits of interest for transgenic plants.  In:  Plant Biotechnology and Genetics:  Principles, Techniques and Applications, C. Neal Stewart, Jr., ed., Wiley and Sons, New York.
  • Korth, K.L., Wailes, E.J., Clark, J.R., & J.C. Correll (2007) Public perception and technological approaches to crop protection in the south-eastern U.S. XVI International Plant Protection Congress Proceedings, October 15-18, Glasgow, U.K.
  • Huang, J., Taylor, J.P., Chen, J.G., Uhrig, J.F., Schnell, D.F., Nakagawa, T., Korth, K.L., & Jones, A.M. (2006) The Plastid Protein THYLAKOID FORMATION1 and the Plasma Membrane G-protein GPA1 Interact in a Novel Sugar Signaling Mechanism in Arabidopsis.  Plant Cell 18: 1226-1238.
  • Korth, K.L., Doege, S.J., Park, S.-H., Goggin, F.L., Wang, Q., Gomez, S. K., Liu G., Jia L., & Nakata, P.A. (2006)  Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol. 141: 188-195.
  • Bede, J.C. Musser, R.O. Felton, G.W., & Korth, K.L. (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis.  Plant Mol. Biol. 60:519-531.
  • Edwards, O., Klingler, J., Gao, L., Korth, K., Singh K. (2006) Medicago truncatula interaction with insects. In The Medicago truncatula Handbook, U. Mathesius, ed.,http://www.noble.org/MedicagoHandbook/
  • Korth, K.L., & Thompson, G.A. (2006) Chemical signals in plants: jasmonates and the role of insect-derived elicitors in responses to herbivores.  In Multigenic and Induced Systemic Resistance in Plants, S. Tuzun and E. Bent, eds., Springer Publishing, New York, 259-278.
  • Gomez, S.K., Cox, M.M., Bede, J.C., Inoue, K., Alborn, H.T., Tumlinson, J.H., and Korth, K.L. (2005). Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch. Insect Physiol. Bioch. 58:114-127.
  • Wang, Q., Sullivan, R.W. Kight A., Henry R.L., Huang J., Jones A.M., and Korth, K.L. (2004) Deletion of the chloroplast-localized THYLAKOID FORMATION1 gene product in Arabidopsis thaliana leads to deficient thylakoid formation and variegated leaves. Plant Physiol. 136:3594-3604.
  • Korth, K.L. (2003) Profiling plant responses to herbivorous insects. Genome Biology, 4(7): 221.1-221.4
  • Felton, G.W., & Korth, K.L. (2000) Trade-offs between pathogen and herbivore resistance. Current Opinion Plant Biology, 3:309-314.
  • Crane, Y.M. and Korth, K.L. (in press) Regulated accumulation of 3-hydroxy-3-methylglutaryl CoA reductase protein in potato cell cultures: effects of calcium and enzyme inhibitors. J. Plant Physiology
  • Korth, K.L., Blount, J.W., Chen, F., Rasmussen, S., Lamb, C. & Dixon, R.A. (2001) Changes in phenylpropanoid metabolites associated with homology-dependent silencing of phenylalanine ammonia-lyase and its somatic reversion in tobacco. Physiologia Plantarum, 111:137-143.
  • Korth, K.L, Jaggard, D.A.W., & Dixon, R.A. (2000) Developmental and light-regulated posttranslational control of 3-hydroxy-3-methylglutaryl-CoA reductase protein. Plant Journal, 23:507-516.
  • Felton, G.W. & Korth, K.L. (2000) Trade-offs between pathogen and herbivore resistance. Current Opinion Plant Biology, 3:309-314.
  • Reddy, J.T., Korth, K.L., Wesley, S.V., Howles, P.A., Rasmussen, S., Lamb, C. & Dixon, R.A. (2000) Post-transcriptional regulation of phenylalanine ammonia-lyase expression in tobacco following recovery from gene silencing. Biological Chemistry, 381:655-665.
  • Blount, J.W., Korth, K.L., Masoud, S.A., Rasmussen S, Lamb, C. & Dixon, R.A. (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants identifies a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiology, 122:107-116.
  • Felton, G.W., Korth, K.L., Bi, J.L., Wesley, S.V., Huhman, D.V., Mathews, M.C., Murphy, J.B., Lamb, C., & Dixon, R.A. (1999). Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology, 9:317-320